Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
J Dairy Sci ; 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38216046

ABSTRACT

The present study aimed to use detailed phenotyping for the claw disorder digital dermatitis (DD) considering specific DD stages in 2 housing systems (conventional cubicle barns = CON and compost bedded pack barns = CBPB) to infer possible genotype x housing system interactions. The DD-stages included 2,980 observations for the 3 traits DD-sick, DD-acute and DD-chronic from 1,311 Holstein-Friesian and 399 Fleckvieh-Simmental cows. Selection of the 5 CBPB and 5 CON herds was based on a specific protocol to achieve a high level of herd similarity with regard to climate, feeding, milking system and location, but with pronounced housing system differences. Five other farms had "a mixed system" with 2 sub-herds, one representing CBPB and the other one CON. 899 cows (1530 observations) represented the CBPB system, and 811 cows (1450 observations) the CON system. The average disease prevalence was 20.47% for DD-sick, 13.88% for DD-acute and 5.34% for DD-chronic, with a higher prevalence in CON than in CBPB. After quality control of 50K genotypes, 38,495 SNPs from 926 cows remained for the ongoing genomic analyses. Genetic parameters for DD-sick, DD-acute and DD-chronic were estimated by applying single-step approaches for single-trait repeatability animal models considering the whole data set, and separately for the CON and CBPB subsets. Genetic correlations between same DD traits from different housing systems, and between DD-sick, DD-chronic and DD-acute, were estimated via bivariate animal models. Heritabilities based on the whole data set were 0.16 for DD-sick, 0.14 for DD-acute and 0.11 for DD-chronic. A slight increase of heritabilities and genetic variances was observed in CON compared with the "well-being" CBPB system, indicating a stronger genetic differentiation of diseases in a more challenging environment. Genetic correlations between same DD traits recorded in CON or CBPB were close to 0.80, disproving obvious genotype x housing system interactions. Genetic correlations among DD-sick, DD-acute and DD-chronic ranged from 0.58 to 0.81. SNP main effects and SNP x housing system interaction effects were estimated simultaneously via GWAS considering only the phenotypes from genotyped cows. Ongoing annotations of potential candidate genes focused on chromosomal segments 100 kb upstream and downstream from the significantly associated candidate SNP. GWAS for main effects indicated heterogeneous Manhattan plots for especially for DD-acute and DD-chronic, indicating particularities in disease pathogenesis. Nevertheless, a few shared annotated potential candidate genes, i.e., METTL25, AFF3, PRKG1 and TENM4 for DD-sick and DD-acute, were identified. These genes have direct or indirect effects on disease resistance or immunology. For the SNP x housing system interaction, the annotated genes ASXL1 and NOL4L on BTA 13 were relevant for DD-sick and DD-acute. Overall, the very similar genetic parameters for same traits in different environments and negligible genotype x housing system interactions indicate only minor effects on genetic evaluations for DD due to housing system particularities.

2.
Biology (Basel) ; 12(12)2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38132309

ABSTRACT

A study was designed to identify the genomic regions associated with milk production traits in a dairy cattle population reared by smallholder farmers in the harsh and challenging tropical savanna climate of Bengaluru, India. This study is a first-of-its-kind attempt to identify the selection sweeps for the dairy cattle breeds reared in such an environment. Two hundred forty lactating dairy cows reared by 68 farmers across the rural-urban transiting regions of Bengaluru were selected for this study. A genome-wide association study (GWAS) was performed to identify candidate genes for test-day milk yield, solids-not-fat (SNF), milk lactose, milk density and clinical mastitis. Furthermore, the cross-population extended haplotype homozygosity (XP-EHH) methodology was adopted to scan the dairy cattle breeds (Holstein Friesian, Jersey and Crossbred) in Bengaluru. Two SNPs, rs109340659 and rs41571523, were observed to be significantly associated with test-day milk yield. No significant SNPs were observed for the remaining production traits. The GWAS for milk lactose revealed one SNP (rs41634101) that was very close to the threshold limit, though not significant. The potential candidate genes fibrosin-like 1 (FBRSL) and calcium voltage-gated channel auxiliary subunit gamma 3 (CACN) were identified to be in close proximity to the SNP identified for test-day milk yield. These genes were observed to be associated with milk production traits based on previous reports. Furthermore, the selection signature analysis revealed a number of regions under selection for the breed-group comparisons (Crossbred-HF, Crossbred-J and HF-J). Functional analysis of these annotated genes under selection indicated pathways and mechanisms involving ubiquitination, cell signaling and immune response. These findings point towards the probable selection of dairy cows in Bengaluru for thermotolerance.

3.
Genes (Basel) ; 14(11)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38003026

ABSTRACT

A genomic study was conducted to identify the effects of urbanization and environmental contaminants with heavy metals on selection footprints in dairy cattle populations reared in the megacity of Bengaluru, South India. Dairy cattle reared along the rural-urban interface of Bengaluru with/without access to roughage from public lakeshores were selected. The genotyped animals were subjected to the cross-population-extended haplotype homozygosity (XP-EHH) methodology to infer selection sweeps caused by urbanization (rural, mixed, and urban) and environmental contamination with cadmium and lead. We postulated that social-ecological challenges contribute to mechanisms of natural selection. A number of selection sweeps were identified when comparing the genomes of cattle located in rural, mixed, or urban regions. The largest effects were identified on BTA21, displaying pronounced peaks for selection sweeps for all three urbanization levels (urban_vs_rural, urban_vs_mixed and rural_vs_mixed). Selection sweeps are located in chromosomal segments in close proximity to the genes lrand rab interactor 3 (RIN3), solute carrier family 24 member 4 (SLC24A4), tetraspanin 3 (TSPAN3), and proline-serine-threonine phosphatase interacting protein 1 (PSTPIP1). Functional enrichment analyses of the selection sweeps for all three comparisons revealed a number of gene ontology (GO) and KEGG terms, which were associated with reproduction, metabolism, and cell signaling-related functional mechanisms. Likewise, a number of the chromosomal segments under selection were observed when creating cattle groups according to cadmium and lead contaminations. Stronger and more intense positive selection sweeps were observed for the cadmium contaminated group, i.e., signals of selection on BTA 16 and BTA19 in close proximity to genes regulating the somatotropic axis (growth factor receptor bound protein 2 (GRB2) and cell ion exchange (chloride voltage-gated channel 6 (CLCN6)). A few novel, so far uncharacterized genes, mostly with effects on immune physiology, were identified. The lead contaminated group revealed sweeps which were annotated with genes involved in carcass traits (TNNC2, SLC12A5, and GABRA4), milk yield (HTR1D, SLCO3A1, TEK, and OPCML), reproduction (GABRA4), hypoxia/stress response (OPRD1 and KDR), cell adhesion (PCDHGC3), inflammatory response (ADORA2A), and immune defense mechanism (ALCAM). Thus, the findings from this study provide a deeper insight into the genomic regions under selection under the effects of urbanization and environmental contamination.


Subject(s)
Cadmium , Urbanization , Animals , Cattle/genetics , Cadmium/toxicity , Genome/genetics , Genotype , Selection, Genetic
4.
Genes (Basel) ; 14(11)2023 Nov 19.
Article in English | MEDLINE | ID: mdl-38003045

ABSTRACT

The aim of this study was to establish and evaluate a structural equation model to infer causal relationships among environmental and genetic factors on udder health. For this purpose, 537 Holstein Friesian cows were genotyped, and milk samples were analyzed for novel traits including differential somatic cell counts and specific mastitis pathogens. In the structural model, four latent variables (intramammary infection (IMI), production, time and genetics) were defined, which were explained using manifest measurable variables. The measurable variables included udder pathogens and somatic differential cell counts, milk composition, as well as significant SNP markers from previous genome-wide associations for major and minor pathogens. The housing system effect (i.e., compost-bedded pack barns versus cubicle barns) indicated a small influence on IMI with a path coefficient of -0.05. However, housing system significantly affected production (0.37), with ongoing causal effects on IMI (0.17). Thus, indirect associations between housing and udder health could be inferred via structural equation modeling. Furthermore, genotype by environment interactions on IMI can be represented, i.e., the detection of specific latent variables such as significant SNP markers only for specific housing systems. For the latent variable genetics, especially one SNP is of primary interest. This SNP is located in the EVA1A gene, which plays a fundamental role in the MAPK1 signaling pathway. Other identified genes (e.g., CTNNA3 and CHL1) support results from previous studies, and this gene also contributes to mechanisms of the MAPK1 signaling pathway.


Subject(s)
Mastitis, Bovine , Animals , Female , Cattle , Humans , Latent Class Analysis , Mastitis, Bovine/genetics , Causality , Cell Count/veterinary
5.
Metabolites ; 13(4)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37110153

ABSTRACT

Heat stress (HS) during late gestation implies unfavorable effects on dairy cows and their in-utero heat stressed offspring. The objective of the present study was to elucidate the effect of intrauterine (maternal) HS during the last week of gestation on blood metabolite concentrations of female dairy calves during their first week of life. We defined the mean temperature humidity index (mTHI) during the last gestation week of ≥60 as threshold for maternal HS. In this regard, we compared differences in metabolite concentrations of maternally heat stressed (MHSCALVES) (n = 14) and not heat stressed (NMHSCALVES) (n = 33) calves. We identified 15 metabolites from five different biochemical classes (phosphatidylcholines, cholesteryl esters, sphingomyelins, cresols and hexoses) as potential biomarkers for maternal HS in calves. The plasma concentrations of all significantly affected metabolites were lower in MHSCALVES when compared to NMHSCALVES. The effect of maternal HS during the last week of gestation on blood metabolite concentrations of the female offspring during the first week after birth might be due to HS induced intergenerational physiological alterations, impaired colostrum quality or epigenetic modifications of the calf genome. The results of this pilot study should be validated in ongoing fully standardized studies.

6.
Animals (Basel) ; 13(8)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37106982

ABSTRACT

As tails are often docked within the first days of life, studies investigating tail malformations and injuries in sheep do not exist thus far. To address this gap in the literature, this research aimed to analyse the occurrence of vertebral anomalies and fractures in the tail within an undocked Merinoland sheep population. At 14 weeks of age, the caudal spines of 216 undocked Merinoland lambs was radiographically examined, and tail length and circumference were measured. Anomalies were documented and statistical correlation and model calculations were performed. The occurrence of block vertebrae was observed in 12.96% and wedged vertebrae in 8.33% of the sample. Of the animals, 59 (27.31%) exhibited at least one vertebral fracture, which were observed in the middle and caudal third of the tail. A significant correlation was found between the occurrence of fractures and tail length (r = 0.168) and number of vertebrae (r = 0.155). Conversely, the presence of block and wedged vertebrae was not significantly correlated with tail length, circumference, or number of vertebrae. Only the sex showed significant differences in the probability of axis deviation. These results emphasize the importance of breeding for short tails to avoid fractures.

7.
Article in German | MEDLINE | ID: mdl-36913936

ABSTRACT

OBJECTIVE: In order to establish targeted breeding for short-tailedness, a suitable method must initially be found that allows phenotyping of the sheep tail beyond tail length. In this study, in addition to assessing body measurements, more advanced studies such as ultrasonography and radiology were performed on the caudal spine of sheep for the first time. The objective of this work was to analyze the physiological variation of tail lengths and vertebrae within a merino sheep population. It also aimed to validate the use of sonographic gray scale analysis and perfusion measurement on the sheep tail. MATERIAL AND METHOD: Tail length and circumference in centimeters were measured in 256 Merino lambs on the first or second day of life. At 14 weeks of age the caudal spine of these animals was examined radiographically. Sonographic gray scale analysis and measurement of the perfusion velocity of the caudal artery mediana were also performed in a portion of the animals. RESULTS: The tested method of measurement showed a standard error of 0,08 cm and a coefficient of variation of 0,23% for tail length and 0,78% for tail circumference. The animals had a mean tail length of 22,5±2,32 cm and a mean tail circumference of 6,53±0,49 cm. The mean caudal vertebrae count for this population was 20,4±1,6. The use of a mobile radiographic unit is well suited for imaging the caudal spine in sheep. It was demonstrated that the caudal median artery could be imaged for measurement of perfusion velocity (cm/s), and sonographic gray-scale analysis also showed good feasibility. The mean gray scale value is 19,74±4,5 and the modal value for the most commonly found gray scale pixels is 191,53±120,2. The mean perfusion velocity for the caudal artery mediana is 5,83±3,04 cm/s. CONCLUSION: The results show that the methods presented are well suited for further characterization of the ovine tail. For the first time, gray values for the tail tissue and the perfusion velocity of the caudal artery mediana were determined.


Subject(s)
Spine , Tail , Animals , Sheep , Tail/diagnostic imaging , Ultrasonography
8.
Animals (Basel) ; 12(3)2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35158700

ABSTRACT

This study investigates the motivations and breeding practices of farmers keeping Dahomey cattle in European countries. Data were collected using a web-based open-closed questionnaire survey targeting 55 farmers from Germany, Switzerland and Austria. Descriptive analyses revealed that the earliest European Dahomey herds were established in 2005. Moreover, interest in the breed recently increased as 63.7% of the investigated farmers established their herds between 2016 and 2020. The average herd size comprises seven Dahomey cattle, kept for managing grassland (59.3%), for production of meat or as breeding stock (32.1%) and for a hobby (8.6%). The animals are mostly kept in grazing systems throughout the year, partly fattened with supplement feeds. The low disease incidence and no need for extra health care in the herds indicate the robustness of the breed. Furthermore, meat quality, calving ease, small size, calm character and low feed requirements of Dahomey cattle were valued by the farmers. For the preservation of these features, farmers confirmed their enthusiasm to support any breeding and conservation program of this smallholder breed in Europe and Benin. This study highlights the importance of small-sized cattle for sustainable breeding systems and with regard to ecosystem management practices.

9.
Animals (Basel) ; 12(3)2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35158717

ABSTRACT

The purpose of this study was to compare animal health in compost-bedded pack (CBP) and cubicle housing (CH) systems using data from dairy herd improvement associations. Thirty-two commercial dairy farms located in Austria, Germany, Italy, The Netherlands, Slovenia, and Sweden were included in the study. A matching design (pairing CBP and CH within country) according to herd selection criteria was used. We explored the following health indicators: somatic cell counts (SCC), high SCC, new high SCC, ketosis risk, prolonged calving intervals, dystocia, and stillbirth. Traits for culling and culling-related issues, such as length of life and length of productive life, were also included. We used multivariable (mixed) linear and logistic regression models to evaluate differences between the systems. Udder health, as measured by SCC, was inferior in CBP, although the geometric means were low in both systems. The incidence of stillbirths was higher in CBP, while prolonged calving intervals were fewer, indicating that there were fewer reproductive disorders. There were no differences in longevity between the systems, although CBP had lower proportions of first calvers. Overall, we conclude that there were few and minor differences in health and longevity between the CBP and CH systems in the European context.

10.
Biology (Basel) ; 12(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36671719

ABSTRACT

A comprehensive study was conducted to assess the effects of seasonal transition and temperature humidity index (THI) on the adaptive responses in crossbred dairy cows reared in a tropical savanna region. A total of 40 lactating dairy cattle reared by small-scale dairy farmers in Bengaluru, India, were selected for this study. The research period comprised the transitioning season of summer to monsoon, wherein all traits were recorded at two points, one representing late summer (June) and the other early monsoon (July). A set of extensive variables representing physiological responses (pulse rate, respiration rate, rectal temperature, skin surface temperature), hematological responses (hematological profile), production (test day milk yield, milk composition) and molecular patterns (PBMC mRNA relative expression of selective stress response genes) were assessed. A significant effect of seasonal transition was identified on respiration rate (RR), skin surface temperature, mean platelet volume (MPV), platelet distribution width (PDWc), test day milk yield and on milk composition variables (milk density, lactose, solids-not-fat (SNF) and salts). The THI had a significant effect on RR, skin surface temperature, platelet count (PLT), plateletcrit (PCT) and PDWc. Lastly, THI and/or seasonal transition significantly affected the relative PBMC mRNA expression of heat shock protein 70 (HSP70), interferon beta (IFNß), IFNγ, tumor necrosis factor alpha (TNFα), growth hormone (GH) and insulin-like growth factor-1 (IGF-1) genes. The results from this study reveal environmental sensitivity of novel physiological traits and gene expressions to climatic stressors, highlighting their potential as THI-independent heat stress biomarkers.

11.
Genes (Basel) ; 12(11)2021 10 26.
Article in English | MEDLINE | ID: mdl-34828308

ABSTRACT

This study investigated polymorphisms in the milk protein genes CSN1S1, CSN2, CSN1S2, CSN3, LALBA, and LGB, and casein haplotypes in Beninese indigenous cattle. Considering 67 animals, DNA sequencing of the genes' exons, flanking regions and parts of the 5'-upstream regions identified 1058 genetic variants including 731 previously unknown. In addition, four novel milk protein variants were detected, including CSN3K (p.Ala66Val), LALBAF (p.Arg58Trp), LGBB1 (p.Ala134Val) and LGBK (p.Thr92Asnfs*13). CSN3K is caused by a novel SNP (BTA6:85656526C>T, exon 4) whereas LALBAF and LGBB1 are due to rs714688595C>T (exon 1) and rs109625649C>T (exon 4), respectively. Regarding LGBK, a frameshift insertion of one adenine residue at BTA11:103257980 (exon 3) induces a premature translation termination resulting in a 46% reduction of the reference protein sequence. The casein polymorphisms formed five main CSN1S1-CSN2-CSN1S2-CSN3 haplotypes including B-A1-A-B, B-A1-A-A and C-A2-A-B which are predominant in the investigated cattle breeds. Moreover, in silico analyses of polymorphisms within the 5'- and 3'- untranslated regions of all six milk proteins revealed effects on microRNA and transcription factor binding sites. This study suggests a large genetic variation of milk protein genes in Beninese cattle, which should be investigated in further studies for their effects on milk production, including quality and yield traits.


Subject(s)
Caseins/genetics , Cattle/genetics , Milk Proteins/genetics , Animals , Benin , Breeding , Caseins/metabolism , Cattle/metabolism , Crosses, Genetic , Dairying , Female , Genetic Variation , Haplotypes , Lactation/genetics , Lactation/metabolism , Milk Proteins/metabolism , Polymorphism, Single Nucleotide , Sequence Analysis, DNA/veterinary
12.
Animals (Basel) ; 11(10)2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34679911

ABSTRACT

Compost-bedded pack barns (CBP) are of increasing interest in dairy farming due to their positive effect on animal welfare. The temperature and the moisture content of the bedding material characterising the composting process can promote the growth of thermophilic aerobic sporeformers (TAS). Therefore, the aim of this study was to determine CBP bedding material characteristics, such as moisture content and temperature, and to determine TAS species. The dilution, the heat inactivation of all non-TAS species and the incubation of 13 bedding samples from four CBP groups resulted in a mean TAS amount over all samples of 4.11 log10 cfu/g bedding material. Based on the subsequent sequencing of parts of the 16S rRNA-gene of 99 TAS colonies, the TAS species Aneurinibacillus thermoaerophilus, Bacillus licheniformis, Geobacillus thermodenitrificans, Laceyella sacchari, Thermoactinomyces vulgaris and Ureibacillus thermosphaericus were identified. The moisture content of the bedding material, the relative humidity above the bedding material and the sampling season significantly affected the amount of TAS. The moisture content or relative humidity above the bedding material significantly influenced the concentration of Ureibacillus thermophaericus or Laceyella sacchari. Consequently, an optimal CBP management including a dry lying surface and an optimal composting process will contribute to a moderate microbial, especially TAS amount, and TAS species distribution.

13.
Animals (Basel) ; 11(6)2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34205623

ABSTRACT

The aim of the present study was to detect significant SNP (single-nucleotide polymorphism) effects and to annotate potential candidate genes for novel udder health traits in two different farming systems. We focused on specific mastitis pathogens and differential somatic cell fractions from 2198 udder quarters of 537 genotyped Holstein Friesian cows. The farming systems comprised compost-bedded pack and conventional cubicle barns. We developed a computer algorithm for genome-wide association studies allowing the estimation of main SNP effects plus consideration of SNPs by farming system interactions. With regard to the main effect, 35 significant SNPs were detected on 14 different chromosomes for the cell fractions and the pathogens. Six SNPs were significant for the interaction effect with the farming system for most of the udder health traits. We inferred two possible candidate genes based on significant SNP interactions. HEMK1 plays a role in the development of the immune system, depending on environmental stressors. CHL1 is regulated in relation to stress level and influences immune system mechanisms. The significant interactions indicate that gene activity can fluctuate depending on environmental stressors. Phenotypically, the prevalence of mastitis indicators differed between systems, with a notably lower prevalence of minor bacterial indicators in compost systems.

14.
Arch Anim Breed ; 64(1): 187-198, 2021.
Article in English | MEDLINE | ID: mdl-34109268

ABSTRACT

The accuracy of breeding values strongly depends on the population and herd structure, i.e., the number of animals considered in genetic evaluations and the size of contemporary groups (CGs). Local breeds are usually kept in small-sized family farms under alternative husbandry conditions. For such herd structure, consideration of classical herd or herd-test-day effects in CG modeling approaches implies only a few records per effect level. In consequence, the present study aimed on methodological evaluations of different herd clustering strategies, considering social-ecological and herd characteristics. In this regard, we considered 19 herds keeping cows from the small local population of German Black Pied cattle (Deutsches Schwarzbuntes Niederungsrind; DSN), 10 herds keeping Holstein Friesian (HF) cows and one mixed herd with HF and DSN cows. Herds were characterized for 106 variables, reflecting farm conditions, husbandry practices, feeding regime, herd management, herd fertility status, herd health status and breeding strategies as well as social-ecological descriptors. The variables were input data for different clustering approaches including agglomerative hierarchical clustering (AHC), partition around medoids (PAM), fuzzy clustering (FZC) and a clustering of variables combined with agglomerative hierarchical clustering (CoVAHC). The evaluation criterion was the average silhouette width (ASW), suggesting a CoVAHC application and consideration of four herd clusters (HCs) for herd allocation (ASW of 0.510). HC1 comprised the larger, half organic and half conventional DSN family farms, which generate their main income from milk production. HC2 consisted of small organic DSN family farms where cows are kept in tie stables. HC3 included the DSN sub-population from former East Germany, reflecting the large-scale farm types. The specialized HF herds were well separated and allocated to HC4. Generalized linear mixed models with appropriate link functions were applied to compare test-day and female fertility traits of 5538 cows (2341 DSN and 3197 HF) from the first three lactations among the four HCs. Least squares means for milk, fat and protein yield (Mkg, Fkg and Pkg) significantly differed between HC. The significant differences among the four HCs clearly indicate the influence of varying herd conditions on cow traits. The similarities of herds within HC suggested the application of HCs in statistical models for genetic evaluations for DSN. In this regard, we found an increase of accuracies of estimated breeding values of cows and sires and of heritabilities for milk yield when applying models with herd-cluster-test-day or herd-cluster-test-month effects compared to classical herd-test-day models. The identified increase for the number of cows and cow records in CG due to HC effects may be the major explanation for the identified superiority.

15.
J Dairy Res ; 88(2): 147-153, 2021 May.
Article in English | MEDLINE | ID: mdl-33926583

ABSTRACT

This research paper focuses on time-lagged heat stress (HS) effects from an across-generation perspective. Temperature × humidity indexes (THI) from the last 8 weeks of pregnancy were associated with subsequent female offspring performances. The offspring dataset considered 172 905 Holstein dairy cows from calving years 2002-2013 from 1,968 herds, located in the German federal state of Hesse. Production traits included milk yield (MKG), protein percentage (PRO%), fat percentage (FAT%), somatic cell score (SCS) and milk urea nitrogen (MUN) from the first official test-day in first lactation. Female fertility traits were the non-return-rate after 56 d (NRR56) in heifers and the interval from calving to first insemination (ICFI) in first parity cows. Longevity traits were the length of productive life (LPL), lifetime productivity in milk yield (LTP-MKG) and milk yield per day of life (MKG-DL). The association analyzes for 10 traits combined with meteorological data from 8 single weeks before calving implied in total 80 different runs. THI ≥50 from all single 8 weeks before calving had unfavorably significant effects on FAT%, ICFI and LPL. Heat stress in terms of THI ≥60 from the last 3 weeks before calving impaired MKG. NRR56 decreased with increasing THI, as observed for all 6 weeks before calving. LTP-MKG and MKG-DL decreased due to high THI in the last 4 weeks before calving. Heat stress (THI ≥60) during late pregnancy had no significantly unfavorable impact on PRO% and MUN. Interestingly, SCS in offspring declined with increasing THI during late pregnancy. In conclusion, for most of the primary and functional traits, unfavorable impact of HS from the dry period on time-lagged performances in offspring was identified, even on longevity. From a practical perspective, our data suggest to provide HS abatement to late gestation dams to avoid long-term adverse effects on the offspring.


Subject(s)
Cattle Diseases/physiopathology , Fertility/physiology , Heat-Shock Response/physiology , Lactation/physiology , Longevity/physiology , Prenatal Exposure Delayed Effects/veterinary , Animals , Cattle , Cell Count , Fats/analysis , Female , Gestational Age , Milk/chemistry , Milk/cytology , Pregnancy
16.
J Anim Sci ; 99(5)2021 May 01.
Article in English | MEDLINE | ID: mdl-33822077

ABSTRACT

Impact of direct heat stress (HS) on genetic parameter estimates, i.e., HS close to the trait recording date, was verified in several previous studies conducted in dairy and beef cattle populations. The aim of the present study was to analyze the impact of time-lagged HS at different recording periods during late pregnancy (a.p.) and postpartum (p.p.) on genetic parameter estimates for birth weight (BWT) and weight gain traits (200 d- and 365 d-weight gain (200dg, 365dg)) in offspring of the dual-purpose cattle breed "Rotes Höhenvieh" (RHV). Furthermore, we estimated genetic correlations within traits across time-lagged climatic indicators, in order to proof possible genotype by environment interactions (G×E). Trait recording included 5,434 observations for BWT, 3,679 observations for 200dg and 2,998 observations for 365dg. Time-lagged climatic descriptors were classes for the mean temperature humidity index (mTHI) and number of HS days (nHS) from the following periods: 7 d-period a.p. (BWT), 56 d-period a.p., and 56 d-period p.p. (200dg and 365dg). Genetic parameters were estimated via 2-trait animal models, i.e., defining the same trait in different climatic environments as different traits. Genetic variances and heritabilities for all traits increased with increasing mTHI- and nHS-classes for all recording periods, indicating pronounced genetic differentiation with regard to time-lagged in utero HS and HS directly after birth. Similarly, in low mTHI- and nHS-classes indicating cold stress, genetic variances, and heritabilities were larger than for temperate climates. Genetic correlations substantially smaller than 0.80 indicating G × E were observed when considering same traits from mTHI- and nHS-classes in greater distance. Estimated breeding values (EBV) of the 10 most influential sires with the largest number of offspring records fluctuated across mTHI- and nHS-classes. Correlations between sire EBV for same traits from distant climatic classes confirmed the genetic correlation estimates. Sires displaying stable EBV with climatic alterations were also identified. Selection of those sires might contribute to improved robustness in the RHV outdoor population genetically.


Subject(s)
Lactation , Milk , Animals , Birth Weight , Cattle/genetics , Female , Heat-Shock Response , Models, Genetic , Phenotype , Postpartum Period , Pregnancy , Weight Gain/genetics
17.
J Dairy Res ; 88(4): 413-419, 2021 Nov.
Article in English | MEDLINE | ID: mdl-35067246

ABSTRACT

Compost bedded pack barns (compost) as a new free walk housing system favorably influence udder health due to improved animal welfare and lying comfort. On the other hand, unfavorable effects on udder health are possible, due to the open bedded pack and the associated larger bacterial content in moisture. For in-depth farming system comparisons, the present study aimed to evaluate the specific cell fractions and mastitis pathogens in milk from cows kept in compost and in conventional cubical barns (cubicle). For milk sample collection we used a repeated measurement data structure of 2,198 udder quarters from 537 Holstein cows kept in six herds (3 in compost and 3 in cubicle). Differential cell counting was conducted including lymphocytes, macrophages and polymorphonuclear leukocytes (PMN). Specific mastitis pathogens comprised major and minor pathogens. Mixed models were applied to infer environmental and cow associated effects on cell fractions and on prevalences for pathogen infections, with specific focus on system × lactation stage, system × milk yield and system × somatic cell count effects. The interaction between system and lactation stage showed significant differences (P < 0.01) between the systems. A significantly smaller number of bacteriologically positive quarters and lower prevalences for minor pathogens were detected in compost compared to cubicle. Least squares means for pathogen prevalences indicated a quite constant proportion of bacteriologically negative udder quarters across milk yield levels in compost, but a slight increase with increasing milk yield in cubicle. Cell fraction responses in both systems differed in relation to the overall bacteriological infection status and farming system particularities. In conclusion, different cell fractions and specific mastitis pathogens should be considered as an indicator for udder health in different production systems, taking into account cow associated factors (lactation stage, milk yield).


Subject(s)
Composting , Housing, Animal/classification , Mastitis, Bovine , Milk , Animals , Cattle , Cell Count/veterinary , Dairying , Female , Lactation , Mammary Glands, Animal , Milk/cytology , Milk/microbiology
18.
BMC Genomics ; 21(1): 783, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33176675

ABSTRACT

BACKGROUND: Specific adaptive features including disease resistance and growth abilities in harsh environments are attributed to indigenous cattle breeds of Benin, but these breeds are endangered due to crossbreeding. So far, there is a lack of systematic trait recording, being the basis for breed characterizations, and for structured breeding program designs aiming on conservation. Bridging this gap, own phenotyping for morphological traits considered measurements for height at withers (HAW), sacrum height (SH), heart girth (HG), hip width (HW), body length (BL) and ear length (EL), including 449 cattle from the four indigenous Benin breeds Lagune, Somba, Borgou and Pabli. In order to utilize recent genomic tools for breed characterizations and genetic evaluations, phenotypes for novel traits were merged with high-density SNP marker data. Multi-breed genetic parameter estimations and genome-wide association studies (GWAS) for the six morphometric traits were carried out. Continuatively, we aimed on inferring genomic regions and functional loci potentially associated with conformation, carcass and adaptive traits. RESULTS: SNP-based heritability estimates for the morphometric traits ranged between 0.46 ± 0.14 (HG) and 0.74 ± 0.13 (HW). Phenotypic and genetic correlations ranged from 0.25 ± 0.05 (HW-BL) to 0.89 ± 0.01 (HAW-SH), and from 0.14 ± 0.10 (HW-BL) to 0.85 ± 0.02 (HAW-SH), respectively. Three genome-wide and 25 chromosome-wide significant SNP positioned on different chromosomes were detected, located in very close chromosomal distance (±25 kb) to 15 genes (or located within the genes). The genes PIK3R6 and PIK3R1 showed direct functional associations with height and body size. We inferred the potential candidate genes VEPH1, CNTNAP5, GYPC for conformation, growth and carcass traits including body weight and body fat deposition. According to their functional annotations, detected potential candidate genes were associated with stress or immune response (genes PTAFR, PBRM1, ADAMTS12) and with feed efficiency (genes MEGF11 SLC16A4, CCDC117). CONCLUSIONS: Accurate measurements contributed to large SNP heritabilities for some morphological traits, even for a small mixed-breed sample size. Multi-breed GWAS detected different loci associated with conformation or carcass traits. The identified potential candidate genes for immune response or feed efficiency indicators reflect the evolutionary development and adaptability features of the breeds.


Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide , Animals , Cattle/genetics , Genome , Genomics , Phenotype
19.
Transl Anim Sci ; 4(3): txaa148, 2020 Jul.
Article in English | MEDLINE | ID: mdl-33033792

ABSTRACT

Climate change causes rising temperatures and extreme weather events worldwide, with possible detrimental time-lagged and acute impact on production and functional traits of cattle kept in outdoor production systems. The aim of the present study was to infer the influence of mean daily temperature humidity index (mTHI) and number of heat stress days (nHS) from different recording periods on birth weight (BWT), 200 d- and 365 d-weight gain (200 dg, 365 dg) of calves, and on the probability of stillbirth (SB), and calving interval (CINT) of their dams. Data recording included 4,362 observations for BWT, 3,136 observations for 200 dg, 2,502 observations for 365 dg, 9,293 observations for the birth status, and 2,811 observations for CINT of the local dual-purpose cattle breed "Rotes Höhenvieh" (RHV). Trait responses on mTHI and nHS were studied via generalized linear mixed model applications with identity link functions for Gaussian traits (BWT, 200 dg, 365 dg, CINT) and logit link functions for binary SB. High mTHI and high nHS before autumn births had strongest detrimental impact on BWT across all antepartum- (a.p.) periods (34.4 ± 0.79 kg maximum). Prolonged CINT was observed when cows suffered heat stress (HS) before or after spring calvings, with maximum length of 391.6 ± 3.82 d (56 d a.p.-period). High mTHI and high nHS during the 42 d- and 56 d a.p.-period implied increased probabilities for SB. We found a significant (P < 0.05) seasonal effect on SB in model 3 across all a.p.-periods, with the highest probability in autumn (maximum of 5.4 ± 0.82% in the 7 d a.p.-period). Weight gains of calves (200 dg and 365 dg) showed strongest HS response for mTHI and nHS measurements from the long-term postnatal periods (42 d- and 56 d-periods), with minimum 200 dg of 194.2 ± 4.15 kg (nHS of 31 to 42 d in the 42 d-period) or minimum 365 dg of 323.8 ± 3.82 kg (mTHI ≥ 60 in the 42 d-period). Calves born in summer, combined with high mTHI or high nHS pre- or postnatal, had lower weight gains, compared with calves born in other calving seasons or under cooler conditions. Highest BWT, weight gains, and shortest CINT mostly were detected under cool to moderate climate conditions for mTHI, and small to moderate nHS. Results indicate acute and time-lagged HS effects and address possible HS-induced epigenetic modifications of the bovine genome across generations and limited acclimatization processes to heat, especially when heat occurs during the cooler spring and autumn months.

20.
J Anim Breed Genet ; 137(6): 622-640, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32672901

ABSTRACT

The indigenous cattle population of Benin is a diverse mix of taurine and hybrid breeds shaped by diverse ecological and climatic conditions with eight agro-ecological zones (AEZ). Presumably, the taurine breeds face current endangerment due to ongoing indicine introgression following climate change and transboundary transhumance. The aim of the study was to investigate the genetic diversity and population structure of the indigenous breeds Lagune, Somba, Pabli and Borgou considering spatial agro-ecological and socio-economic factors (transhumance) based on 50k SNP and microsatellite data. Among the four sampled breeds, six genetic clusters were identified using model-free (discriminant analysis of principal components) and model-based (TESS and ADMIXTURE) methods separating taurine from hybrid breeds. Results based on an extension with publicly available historic SNP data sets from taurine and indicine West African cattle and additional outgroups provided additional insight into changes of genetic structure in the sampled breeds over time. Both taurine breeds, Somba and Lagune, showed a stable foundation but also spatially limited partial indicine introgression associated with transhumance leading to high genetic diversity. In addition, we found evidence for spatial diversity and changes in genetic structure over time in the Borgou breed in comparison of our samples with the historic samples which could be explained by potential continuous indicine introgression into the Borgou breed in two sample regions. Results for the Pabli breed do not conclusively point to full absorbance by the Borgou in comparison with all available Borgou samples. Further research is needed in this regard.


Subject(s)
Breeding , Genetic Variation/genetics , Genetics, Population , Agriculture , Animals , Benin , Cattle , Discriminant Analysis , Ecology
SELECTION OF CITATIONS
SEARCH DETAIL
...